90. Phenylenbis(silandiyl-triflate) als neuartige Synthesebausteine für vielfältig strukturierte Organosilizium-Polymere

von Wolfram Uhlig

Laboratorium für Anorganische Chemie der Eidgenössischen Technischen Hochschule Zürich, Universitätstrasse 6, ETH-Zentrum, CH-8092 Zürich

(26.1.94)

Phenylenebis(silandiyl triflates) - New Synthetic Building Blocks for Variously Structured Organosilicon Polymers

Ortho-, meta-, and para-substituted phenylenebis(silandiyl triflates) are prepared as new useful building blocks for the synthesis of polymers with a regular alternating arrangement of an organosilicon unit and a π -electron system (phenylene or ethynylene) in the backbone. Such polymers can be used as photoresists, semiconducting materials or precursors of silicon carbide. The phenylenebis(silandiyl-triflates) $\mathbf{5a}$ - \mathbf{c} are obtained by protodesilylation of the corresponding (allylsilyl)- or [(diethylamino)silyl]benzenes $\mathbf{3a}$ - \mathbf{c} and $\mathbf{4a}$ - \mathbf{c} , respectively, with trifluoromethanesulfonic acid. Reactions with dinucleophiles like Li_2C_2 and $\text{Ph}_2\text{Si}(\text{OH})_2$ lead to variously structured organosilicon polymers (see Eqns. 11 and 12), which are characterized by spectroscopic methods.

Einleitung. – Polymere, in denen Organosilizium-Einheiten mit π -Elektronensystemen, beispielsweise Phenylen-[1-4], Ethenylen-[5], Ethinylen-[6-10], Diethinylen-[11-13], Thienylen- [14-16], Furylen- [17] [18] oder Butinylen-Bausteinen [19] [20], in der Hauptkette regelmässig alternieren, finden in den letzten Jahren wachsendes Interesse. Dieses ist vor allem durch ihre potentielle Nutzung als Funktionsmaterialien (Photoresists, Halbleiter, Vorläufer für Siliziumcarbid) begründet. In der Regel werden diese Polymere durch eine Wurtz-Reaktion aus Bis(chlorosilyl)-substituierten Verbindungen erhalten. Einen zweiten Zugang stellt die Kupplungsreaktion von Dilithio-Derivaten der π -System-Bausteine mit organischen Dichlorosilanen oder Dichlorodisilanen dar. Verbindungen, die nach diesen Methoden hergestellt werden, enthalten jedoch immer einen geringen Prozentsatz Siloxy-Einheiten, die auf der Hydrolyse und Kondensation unumgesetzter Chlorosilyl-Einheiten im resultierenden Polymer beruhen. Siloxy-Einheiten in der Polymer-Kette bedeuten jedoch eine Unterbrechung der Elektronendelokalisation und senken daher die Photoaktivität und Leitfähigkeit der Polymere. Es hat daher nicht an der Suche nach alternativen Synthesewegen gefehlt. Genannt seien besonders Ringöffnungspolymerisationen mittels katalytischer Mengen von Alkyllithium-Verbindungen [6] [8], Polymerisationen von Diethinylsilanen mittels Pd-Katalysatoren [21] [22], von Diethinyldisilanen mit Rh¹-Katalysatoren [19] [20] oder von Phenylendisilanen mit Zirconium-Verbindungen [23]. Auch die Umsetzung von Phenylenbis(magnesiumbromid) mit Chlorosilanen [24] bietet eine interessante Alternative.

Bei unseren Untersuchungen zur Chemie der als 'Superelektrophile' bezeichneten monomeren, oligomeren und polymeren Silyl-triflate (Trifluoromethansulfonsäure-silylester) [25–30] fanden wir einen weiteren effektiven Zugang zu vielseitig modifizierten

Organosilizium-Polymeren. Die Synthesen gemäss Gl. 1 sind durch einen hohen Umsetzungsgrad gekennzeichnet, der die unerwünschte Siloxy-Gruppenbildung in den resultierenden Polymeren verhindert. Ausserdem ermöglicht die Kombinierbarkeit der Bissilandiyl-triflate) mit zahlreichen Dinucleophilen die gezielte Synthese sehr unterschiedlich strukturierter Polymere.

$$\frac{H-Y-H/2Et_3N}{-2(Et_3NH)OTf} \blacktriangleright \frac{1}{n} (-R_2Si-X-SiR_2-Y-)_n$$

$$(TfO)R_2Si-X-SiR_2(OTf)$$

$$\frac{Li-Z-Li}{-2 LiOTf} \blacktriangleright \frac{1}{n} (-R_2Si-X-SiR_2-Z-)_n$$
(1)

 $X = C \equiv C$ [31], $(SiMe_2)_n$ [32], CHPh [33]; $Y = OSiPh_2O$, OCH_2CH_2O ; $Z = C \equiv C$, $C \equiv C - C \equiv C$, PPh

Silyl-triflate besitzen gegenüber anderen elektrophilen Reagenzien des Typs R₃SiX eine Reihe wesentlicher Vorzüge [34]. Gemeinsam mit den Iodiden verfügen sie über die höchste Reaktivität aller Silylierungsreagenzien [35]. In der Anwendung sind sie diesen aufgrund ihrer Redox-Stabilität jedoch überlegen. Ausserdem werden bei der Umsetzung mit Nucleophilen keine dem Metall-Halogen-Austausch analogen Prozesse beobachtet [36]. Schliesslich besteht ein wichtiger Vorteil darin, dass speziell substituierte Silyl-triflate häufig leichter und selektiver herstellbar sind als analoge Halogen-Derivate. Diese Aussage basiert auf der Erkenntnis, dass Silizium-Element-Bindungen von Trifluoromethansulfonsäure (TfOH=CF₃SO₃H) in selektiver Weise gemäss *Gl. 2* gespalten werden.

$$R_3SiX + CF_3SO_3H \xrightarrow{0^{\circ}C/Et_2O} R_3Si-OSO_2CF_3 + HX$$
 (2)

Die Spaltungsgeschwindigkeit der Bindung Si-X sinkt dabei in signifikanter Weise in der Reihenfolge: X = Et₂N > Allyl > Naphth-*l*-yl > Phenyl > Cl > H, Alkinyl > Alkyl [27] [37-39]. Einen Sonderfall stellt dabei die Umsetzung der Aminosilane mit CF₃SO₃H dar. Die Säure muss hier im stöchiometrischen Verhältnis 2:1 zugesetzt werden, da das eliminierte Amin sofort zum Ammonium-trifluoromethansulfonat reagiert.

Unser Interesse richtete sich darauf, Phenylenbis(silandiyl-triflate) herzustellen und ihr Synthesepotential als Edukte für neue Silizium-haltige Oligo- und Polymere gemäss $Gl.\ 1$ zu untersuchen. Dabei waren zum einen Polymere von Interesse, in denen die Phenylenbis(silandiyl)-Struktureinheiten mit π -Elektronensystemen alternieren. Zum anderen richteten sich unsere Untersuchungen auch auf die Synthese von Silphenylen-Siloxa-Copolymeren, einer Polymer-Klasse, die in optimaler Weise gute mechanische Eigenschaften mit hoher thermischer Stabilität verbindet [40–46].

Ergebnisse und Diskussion. – Entsprechend der zur Spaltungsgeschwindigkeit der Bindung Si–X (Gl. 2) gemachten Aussagen sind Amino- oder Allylsilane ideale Ausgangsverbindungen zur Herstellung von Silyl-triflaten. Da sie bezüglich ihrer Synthese jedoch einen grösseren präparativen Aufwand erfordern, setzt man sie nur dann ein, wenn die leichter zugänglichen Phenylsilane als Edukte ungeeignet sind. Dieses Problem tritt jedoch bei der Synthese von Phenylenbis(silandiyl-triflaten) auf, denn die Umsetzung der ortho-, meta- und para-substituierten Bis(phenylsilyl)benzole 1a-c mit CF₃SO₃H

$$PhMe_{2}Si - SiMe_{2}Ph \qquad \frac{4 CF_{3}SO_{3}H}{-3 C_{6}H_{6}} \qquad 2 Me_{2}Si(OSO_{2}CF_{3})_{2}$$

$$2a \qquad (3)$$

PhMeHSi SiHMePh
$$\frac{4 \text{ CF}_3 \text{SO}_3 \text{H}}{-3 \text{ C}_6 \text{H}_6}$$
 2 MeHSi(OSO₂CF₃)₂ (4)

PhMeCISi

PhMeCISi

1c

$$\frac{4 \text{ CF}_3 \text{SO}_3 \text{H}}{-3 \text{ C}_6 \text{H}_6} \qquad 2 \text{ MeCISi}(\text{OSO}_2 \text{CF}_3)_2$$
2 (5)

führt entsprechend der *Gl. 3–5* zur Spaltung sämtlicher Silizium-Aryl-Bindungen. Dabei ist kein signifikanter Unterschied in der Abspaltungsgeschwindigkeit der endständigen Ph-Gruppen und der verbrückenden Phenylen-Gruppe zu erkennen. Die resultierenden Silyl-triflate **2a–c** lassen sich anhand ihrer ²⁹Si-NMR-chemischen Verschiebungen [26] leicht identifizieren.

Es verbleiben als potentielle Abgangsgruppen für die selektive Protodesilylierung gemäss Gl. 2 folglich nur die Amino- oder die Allyl-Gruppe. Die benötigten (Allylsilyl)benzole 3a-c lassen sich in leichter Reaktion analog zu entsprechenden Synthesen von Methyl- und Phenyl-Derivaten nach der Methode von Ishikawa et al. [47] nach Gl. 6 herstellen. Sie fallen in Ausbeuten von 48-60% als im Vakuum destillierbare Flüssigkeiten an. Auf eine möglichst niedrige Destillationstemperatur sollte geachtet werden, da ab einer Temperatur von 80° Zersetzungserscheinungen auftreten.

Zur Synthese der (Aminosilyl)benzole **4a–c** beschritten wir zwei alternative Synthesewege. Das 1,4-substituierte Derivat **4a** lässt sich durch Umsetzen von Phen-1,4-ylenbis-(magnesiumbromid) [48] mit (Diethylamino)dimethylsilyl-triflat [44] nach *Gl.* 7 erhalten.

BrMg - MgBr
$$\frac{2 \text{ (Et}_2\text{N)Me}_2\text{Si(OTf)}}{-2 \text{ MgBr(OTf)}} \leftarrow \text{(Et}_2\text{N)Me}_2\text{Si} - \text{SiMe}_2\text{(NEt}_2\text{)}$$
 (7)

$$SiMe_{2}CI + 4 Et_{2}NH \xrightarrow{-2 Et_{2}NH_{2}CI} SiMe_{2}(NEt_{2})$$

$$SiMe_{2}(NEt_{2})$$

$$4b meta$$

$$c ortho$$

$$(8)$$

Die 1,2- und 1,3-dimetallierten Aromaten sind bedeutend weniger stabil [49–53] und analogen Reaktionen nicht zugänglich. So musste in diesen Fällen der aufwendigere Weg über die entsprechenden (Chlorosilyl)benzole [47] gemäss Gl.8 gewählt werden ($\rightarrow 4b, c$), der natürlich auch für 4a genutzt werden kann.

Ausgehend von den Allyl-Derivaten 3a-c oder den Amino-Derivaten 4a-c gelingt die Synthese der Phenylenbis(silandiyl-triflate) 5a-c bei 0° in Et₂O oder chlorierten Kohlenwasserstoffen nach Gl. 9. Die Ausbeuten der Umsetzungen liegen nach Aussagen der ¹H-bzw. ²⁹Si-NMR-Spektren zwischen 90 und 95%. Somit empfiehlt es sich, 5a-c für Folgeumsetzungen ohne weitere Aufarbeitung einzusetzen. Eine Destillation der Verbindungen ist prinzipiell möglich, jedoch mit erheblichen Ausbeuteverlusten verbunden.

$$3a-c \xrightarrow{2 \text{ TfOH}} (\text{TfO})\text{Me}_2\text{Si} - \bigcirc -\text{SiMe}_2(\text{OTf})$$

$$5a$$

$$(\text{TfO})\text{Me}_2\text{Si} - \bigcirc -\text{SiMe}_2(\text{OTf})$$

$$5b$$

$$4a-c \xrightarrow{4 \text{ TfOH}} (\text{TfO})\text{Me}_2\text{Si} - \bigcirc (\text{T$$

Am Beispiel von 5a sei demonstriert, dass eine weitere Modifizierung der Bis(silandiyl-triflate) leicht möglich ist. Setzt man 5a mit dem von *Tamao et al.* [54] [55] beschriebenen (Et₂N)MePhSiLi um, so entsteht das Disilan-Derivat 6a. Erneute Umsetzung mit CF₃SO₃H liefert nach *Gl. 10* das Bis(silandiyl-triflat) 6b. Dieses stellt einen weiteren interessanten Synthese-Baustein für Organosilizium-Polymere dar.

Mit den Verbindungen 5a—c und 6b stehen neue hochreaktive Bis(silandiyl-triflate) zur Verfügung, die durch Umsetzung mit Dinucleophilen eine grosse Palette neuartiger Silizium-organischer Polymere zugänglich machen. Eine repräsentative Auswahl von Synthese-Varianten ausgehend von 5a ist in Gl. 11 vorgestellt ($\rightarrow 7a$ —d). Analoge Reaktionen sind auch mit 5b, 5c und 6b realisierbar. Die Umsetzung von 5b mit Phen-1,4-ylen-

$$\frac{\text{Li}-\text{C}\equiv\text{C}-\text{Li}}{-2 \text{ LiOTf}} \qquad \frac{1}{n} (-\text{SiMe}_2 - \text{C}\equiv\text{C}-)_n \\
7a \\
5a \\
\frac{\text{BrMg}-\text{O}-\text{MgBr}}{-2 \text{ MgBr}(\text{OTf})} \qquad \frac{1}{n} (-\text{SiMe}_2 - \text{SiMe}_2 - \text{C}\equiv\text{C}-)_n \\
7b \\
7c \\
5a \\
\frac{\text{Ph}_2\text{Si}(\text{OH})_2, 2 \text{ Et}_3\text{N}}{-2 \text{ (Et}_3\text{NH})\text{OTf}} \qquad \frac{1}{n} (-\text{SiMe}_2 - \text{O}-\text{SiMe}_2 - \text{O}-\text{SiPh}_2 - \text{O}-)_n \\
7c \\
7c \\
5a \\
\frac{\text{HO}-\text{O}-\text{OH}, 2 \text{ Et}_3\text{N}}{-2 \text{ (Et}_3\text{NH})\text{OTf}} \qquad \frac{1}{n} (-\text{SiMe}_2 - \text{O}-\text{SiMe}_2 - \text{O}-\text{O}-)_n \\
7d \\
5b + \text{BrMg}-\text{MgBr} - \text{MgBr} - \text{MgBr} - \text{MgBr} - \text{MgBr} - \text{MgBr} - \text{OTf})$$
(12)

bis(magnesiumbromid) lässt nach Gl. 12 beispielsweise ein Polymer 7e entstehen, in dem die Silyl-Einheiten alternierend über Phen-1,3-ylen- und Phen-1,4-ylen-Brücken verknüpft sind.

Die in den Gl. 11 und 12 vorgestellten Beispiele vermitteln lediglich einen Eindruck von der Vielfältigkeit der möglichen Polymer-Synthesen ausgehend von Phenylenbis-(silandiyl-triflaten). Die Molmassen, die sich unter den im experimentellen Teil angegebenen Reaktionsbedingungen zwischen 5000 und 10000 g/mol bewegen, sind stark von der Konzentration der Reaktionspartner in Lösung abhängig. Höhere Konzentrationen führen zu höheren Molmassen. Wendet man das Verdünnungsprinzip an, so treten Molmassen von 2000–3000 g/mol auf.

Die ²⁹Si-NMR-Spektren der Verbindungen **7a**—e zeigen die für Polymere typischen verbreiterten Resonanzsignale. Mit einer Signalbreite von 2–4 ppm sind sie jedoch bedeutend schmaler als sie bei Polysilanen oder Polycarbosilanen beobachtet werden [56–58], die mittels *Wurtz*-Synthese hergestellt wurden. Hier können Signalbreiten bis 10 ppm erwartet werden. Die deutlich schmaleren Resonanzen weisen daher auf eine hohe Regelmässigkeit der Strukturelemente in der Polymer-Kette hin.

Zukünftig stellt sich besonders die Frage, ob die hohe Reaktivität und Selektivität der Umsetzungen auch mit billigeren Abgangsgruppen als der Triflat-Gruppe erreichbar ist. Hier empfehlen sich besonders Untersuchungen am Fluorosulfonat, welches ebenfalls den Superelektrophilen zugerechnet wird.

Experimenteller Teil

- 1. Allgemeines. Alle Untersuchungen wurden unter Ausschluss von Luft und Feuchtigkeit durchgeführt, die Lsgm. nach gebräuchlichen Methoden getrocknet. Das stark hygroskopische CF₃SO₃H wurde vor Gebrauch destilliert und dann unter inerten Bedingungen aufbewahrt (detailierte Angaben zur Reinigung von CF₃SO₃H und Aufarbeitung der Rückstände in [41], Kap. 7); Spuren von H₂O in der Säure hatten immer unerwünschte Siloxan-Bildung als Nebenreaktion zur Folge. Die Ausgangsverbindungen Li₂C₂ [9], (Et₂N)Me₂Si(OTf) [44], (Et₂N)MePhSiLi [54] [55], BrMgC₆H₄MgBr [48], 3,3′-Bis(bromomagnesium)biphenyl [59] [60] und Ph₂Si(OH)₂ [61] wurden nach Literaturvorschriften hergestellt. ¹H-, ¹³C-, ²⁹Si-NMR: Multikern-Instrumente AC 80, AM 200 oder WM 300; δ in ppm rel. zu SiMe₄, J in Hz; δ (²⁹Si) triflat-substituierter Si-Atome sowie δ (¹³C) benachbarter C-Atome sind mit einer Schwankungsbreite von 5 ppm konzentrationsabhängig (Angaben bzgl. ca. 1,5м Lsgm). MS: Varian CH 7A; Angabe von m/z (rel. %). Die Molmassen der Polymere wurde mittels 'size-exclusion'-Chromatographie (SEC) mit Toluol als Laufmittel bestimmt, diejenigen der Monomere mittels MS. Alle Verbindungen wurden elementaranalytisch charakterisiert.
- 2. Umsetzung von 1a-c mit CF_3SO_3H . Zu einer Lsg. von je 0,01 mol nach [47] hergestelltem Bis(phenylsilyl)benzol 1a-c in 200 ml Et₂O wird unter ²⁹Si-NMR-Kontrolle eine Lsg. von CF_3SO_3H in Et₂O bei 0° getropft. Nach Zusatz von 0,04 mol CF_3SO_3H ist ein eindeutiger Reaktionsablauf zu erkennen. Die in über 90 % Ausbeute entstandenen Silyl-bis(triflate) 2a-c können anhand ihrer bekannten δ (²⁹Si) im NMR [32] [33] identifiziert werden. ²⁹Si-NMR ($CDCl_3$): 16,5 (2a); -6,7 ($^1J(Si,H) = 308$, (2b); -41,3 (2c).
- 3. Bis(allylsilyl)benzole 3a-c. Zu einem Gemisch von 7,3 g (0,3 mol) Mg-Spänen und 250 ml THF tropft man unter Rühren innerhalb von 3 h eine Mischung aus 35,5 g (0,15 mol) des entsprechenden Dibromobenzols, 40 g (0,3 mol) (Allyl)chlorodimethylsilan und 50 ml THF zu, wobei die Temp. 30° nicht überschreiten sollte. Man rührt noch 3 h und fällt die Mg-Salze durch Zusatz von 300 ml Hexan. Diese werden abfiltriert, und das Filtrat wird eingedampft. Der Rückstand wird i.V. fraktioniert, wobei der Druck so gewählt wird, dass die Destillationstemp. 80° nicht überschreitet (Zersetzungsgefahr): 3a-c als farblose Flüssigkeiten.
- 1,4-Bis[(allyl)dimethylsilyl]benzol (3a): 21,7 g (53%). Sdp. 65-67°/0,3 Torr. 1 H-NMR (CDCl₃): 0,28 (s, 2 Me₂Si); 1,65 (d, $^{3}J=7$, 2 CH₂=CHCH₂); 4,81 (d, $^{3}J=10$, 2 H, 2 CH₂=CHCH₂ (cis)); 4,89 (d, $^{3}J=14$, 2 H, 2 CH₂=CHCH₂ (trans)); 5,82 (m, 2 CH=CHCH₂); 7,31 (s, $C_{6}H_{4}$). ^{13}C -NMR (CDCl₃): 2,42 (Me₂Si); 25,56 (CH₂=CHCH₂); 116,05 (CH₂=CHCH₂); 131,64 (CH₂=CHCH₂); 133,56, 139,01 ($C_{6}H_{4}$). ^{29}Si -NMR (CDCl₃): -5,6. MS (70 eV): 233 (9, [$M-C_{3}H_{5}$]⁺), 41 (100, [$C_{3}H_{5}$]⁺). Anal. ber. für $C_{16}H_{26}Si_{2}$ (274,32): C 70,05, H 9,48; gef.: C 69,79, H 9,23.
- 1.3-Bis[(allyl) dimethylsilyl]benzol (3b): 25 g (61%). Sdp. $60-62^{\circ}/0,1$ Torr. 1 H-NMR (CDCl₃): 0,31 (s, 2 Me₂Si); 1,61 (d, ${}^{3}J = 6.5$, 2 CH₂=CHCH₂); 4,75 (d, ${}^{3}J = 10.5$, 2 H, 2 CH₂=CHCH₂ (cis)); 4,87 (d, ${}^{3}J = 14$, 2 H, 2 CH₂=CHCH₂ (trans)); 5,91 (m, 2 CH₂=CHCH₂); 7,03-7,64 (m, C₆H₄). 13 C-NMR: (CDCl₃): 1,65 (Me₂Si); 27,13 (CH₂=CHCH₂); 115,76 (CH₂=CHCH₂); 133,09 (CH₂=CHCH₂); 128,62, 133,23, 135,97, 139,98 (C₆H₄). 29 Si-NMR (CDCl₃): -6,9. MS (70 eV): 233 (4, [M C₃H₅]⁺), 73 (100, [Me₃Si]⁺). Anal. ber. für C₁₆H₂₆Si₂ (274,32): C 70,05, H 9,48; gef. C 69,87, H 9,53.
- 1,2-Bis[(allyl)dimethylsilyl]benzol (3c): 19,7 g (48%). Sdp. 56–58°/0,1 Torr. 1 H-NMR (CDCl₃): 0,34 (s, 2 Me₂Si); 1,66 (d, ^{3}J = 6, 2 CH₂=CHCH₂); 4,87 (d, ^{3}J = 11,5, 2 H, 2 CH₂=CHCH₂(cis)); 4,98 (d, ^{3}J = 15,5, 2 H, 2 CH₂=CHCH₂(trans)); 5,98 (m, 2 CH₂=CHCH₂); 6,95–7,54 (m, C₆H₄). 13 C-NMR (CDCl₃): 1,34 (Me₂Si); 27,98 (CH₂=CHCH₂); 116,09 (CH₂=CHCH₂); 132,65 (CH₂=CHCH₂); 130,11, 136,23, 141,04 (C₆H₄). 29 Si-NMR (CDCl₃): -7,1. MS (70 eV): 233 (2, [M C₃H₅]⁺), 77 (100, [Ph]⁺). Anal. ber. für C₁₆H₂₆Si₂ (274,32): C 70,05, H 9,48; gef.: C 69,54, H 9,21.
- 4. I_1A -Bis[(diethylamino)dimethylsilyl]benzol (4a). Zu einer Lsg. von 5,6 g (0,02 mol) (Et₂N)Me₂Si(OTf) in 150 ml Et₂O tropft man bei 0° eine Lsg. von 0,01 mol 1,4-(BrMg)C₆H₄(MgBr) innerhalb von 30 min. Man rührt noch 2 h bei RT. Dann wird das Lsgm. abgedampft und durch 150 ml Toluol ersetzt. Das dabei ausfallende Mg-Salz wird abfiltriert, das Filtrat eingedampft und der Rückstand i.V. fraktioniert: 2,05 g (61%). Sdp. $107-109^{\circ}/0.01$ Torr. 1H-NMR (CDCl₃): 0,34 (s, 2 Me₂Si); 1,12 (t, 1J = 6,5 Hz, 4 tHeCH₂); 2,86 (tHeCH₂); 7,39 (tHeCH₃): 1H-NMR (CDCl₃): 3,12 (Me₂Si); 15,12 (tHeCH₂); 43,56 (MeCH₂); 134,08, 140,11 (C₆H₄). 1HeCH₃ Si-NMR (CDCl₃): 1,3. MS (70 eV): 336 (5, [tH)⁺), 72 (100, [tH₁₀N]⁺). Anal. ber. für C₁₈H₃₆N₂Si₂ (336,36): C 64,27, H 10,70, N 8,33; gef.: C 64,09, H 10,43, N 8,15.
- 5. Bis[(diethylamino)silyl]benzole 4b,c. Zu einer Lsg. von 26,3 g (0,1 mol) des entsprechenden Bis(chlorodimethylsilyl)benzols [47] in 500 ml Et₂O tropft man bei 0° unter Rühren eine Lsg. von 30,6 g (0,42 mol) Et₂NH in 200 ml Et₂O innerhalb von 3 h zu. Man führt noch 3 h bei RT. und filtriert dann das ausgefallene Et₂NH₂Cl ab. Das Lsgm. wird abgedampft und der Rückstand fraktioniert.

- 1,3-Bisf (diethylamino) dimethylsilyl] benzol (4b): 23,8 g (71%). Sdp. 99–103°/0,01 Torr. 1 H-NMR (CDCl₃): 0,35 (s, 2 Me₂Si); 1,16 (t, ${}^{3}J$ = 7, 4 MeCH₂); 2,89 (q, 4 MeCH₂); 7,11–7,72 (m, C_6H_4). 13 C-NMR (CDCl₃): 2,97 (Me₂Si); 16,98 (MeCH₂); 44,19 (MeCH₂); 127,95, 135,21, 137,43, 139,89 (C_6H_4). 29 Si-NMR (CDCl₃): 0,8. MS (70 eV): 336 (4,[M] $^{+}$), 77 (100, [Ph] $^{+}$). Anal. ber. für $C_{18}H_{36}N_2Si_2$ (336,36): C 64,27, H 10,70, N 8,33; gef.: C 63,99, H 10,45, N 8,55.
- 1,2-Bis[(diethylamino) dimethylsilyl] benzol (4c): 19,5 g (58%). Sdp. 94–96°/0,01 Torr. 1 H-NMR (CDCl₃): 0,38 (s, 2 Me₂Si); 1,15 (t, $^{3}J = 7$, 4 MeCH₂); 2,92 (q, 4 MeCH₂); 7,16–7,75 (m, $C_{6}H_{4}$). 13 C-NMR (CDCl₃): 3,45 (Me₂Si); 17,34 (MeCH₂); 45,12 (MeCH₂); 128,12, 134,99, 139,16 ($C_{6}H_{4}$). 29 Si-NMR (CDCl₃): –1,4. MS (70 eV): 321 (11, [M Me]⁺), 77 (100, [Ph]⁺). Anal. ber. für $C_{18}H_{36}N_{2}Si_{2}$ (336,36): C 64,27, H 10,70, N 8,33; gef.: C 64,48, H 10,95, N 8,20.
- 6. Phenylenbis(silandiyl-triflate) 5a-c. Methode 1. Zu einer Lsg. von je 5,5 g (0,02 mol) Bis[(allyl)dimethylsilyl)]benzol 3a-c in 150 ml Et₂O tropft man bei -20° eine Lsg. von 6 g (0,04 mol) CF₃SO₃H in 100 ml Et₂O innerhalb von 30 min. Dann erwärmt man auf RT. und dampft ab. Reaktionskontrolle mittels ¹H- bzw. ²⁹Si-NMR: Ausbeuten 93-96% (¹H-NMR-Integrale). Für Folgeumsetzungen wird die Reaktionslösung ohne Aufarbeitung eingesetzt. Eine destillative Aufarbeitung ist möglich, jedoch nur unter erheblichen Verlusten (Ausbeuten 25-45%). Zur Charakterisierung werden destillierte Verbindungen verwendet.
- Methode 2. Zu einer Lsg. von je 3,36 g (0,01 mol) Bis[(diethylamino)dimethylsilyl]benzol **4a-c** in 150 ml Et₂O tropft man bei –40° unter Rühren eine Lsg. von 6 g (0,04 mol) CF₃SO₃H innerhalb von 15 min. Man erwärmt auf RT., filtriert das ausgefallene CF₃SO₃(Et₂NH₂) ab, und dampft ein. Reaktionskontrolle mittels NMR: Ausbeuten 95–98%. Bzgl. destillativer Aufarbeitung, s. Methode 1.
- [Phen-1,4-ylenbis(dimethylsilandiyl)]-bis(trifluoromethansulfonat) (**5a**): Sdp. 124-126°/0,005 Torr. 1 H-NMR (CDCl₃): 0,51 (s, 2 Me₂Si): 7,44 (s, C₆H₄). 13 C-NMR (CDCl₃): 3,88 (Me₂Si): 118,23 (1 , 1
- [Phen-1,3-ylenbis(dimethylsilandiyl)]-bis(trifluoromethansulfonat) (**5b**): Sdp. 121–123°/0,005 Torr. 1 H-NMR (CDCl₃): 0,54 (x, 2 Me₂Si); 7,07–7,69 (m, C₆H₄). 13 C-NMR (CDCl₃): 2,76 (Me₂Si); 117,93 (q, 1J = 312, CF₃); 127,34, 134,56, 136,99, 138,79 (C₆H₄). 29 Si-NMR (CDCl₃): 32,5. MS (70 eV): 490 (1, [M]⁺), 73 (100, [Me₃Si]⁺). Anal. ber. für C₁₂H₁₆F₆O₆S₂Si₂ (490,34): C 29,39, H 3,26; gef.: C 29,58, H 3,39.
- [Phen-1,2-ylenbis(dimethylsilandiyl)]-bis(trifluoromethansulfonat) (**5c**): Sdp. 117–120°/0,005 Torr. 1 H-NMR (CDCl₃): 0,57 (s, 2 Me₂Si); 7,15–7,81 (m, C_6 H₄). 13 C-NMR (CDCl₃): 3,67 (Me₂Si); 118,45 (q, 1 J = 310, CF₃); 127,67, 134,56, 140,55 (C_6 H₄). 29 Si-NMR (CDCl₃): 31,8. MS: (70 eV): 341 (5, [M CF₃SO₃]⁺), 77 (100, [Ph]⁺). Anal. ber. für C_{12} H₁₆F₆O₆S₂Si₂ (490,34): C 29,39, H 3,36; gef.: C 29,76, H 3,54.
- 7. 1,4-Bis[2-(diethylamino)-1,1,2-trimethyl-2-phenyldisilanyl]benzol (6a). Zu einer Lsg. von 4.9 g (0,01 mol) 5a in 250 ml Et₂O tropft man bei -20° eine frisch bereitete und gekühlte Lsg. von 0,02 mol LiSiMePh(Et₂N) [54] innerhalb von 1 h. Man crwärmt auf RT. und dampft ein. Nach Zugabe von 200 ml Toluol fällt das entstandene CF₃SO₃Li als weisser Feststoff aus und wird abfiltriert. Das Filtrat wird eingedampft und der Rückstand im Feinvakuum destilliert (Zersetzung meist unvermeidbar): 2.25 g (39%) (1:1)-Gemisch von meso- und rac-6a (verdoppelte NMR-Signale, Intensitätsverhältnis 1:1). Sdp. 170-176°/0.001 Torr. ¹H-NMR (CDCl₃): 0,27/0,29 (2s, 2 Me₂Si); 0,37/0,40 (2s, 2 MeSi); 1,11/1,15 (2t, 4 MeCH₂); 2,79/2,85 (2q, 4 MeCH₂); 6,95-7,82 (m, 14 arom. H). ¹3C-NMR (CDCl₃): -3,45, -2,78 (Me₂Si); 0,65, 1,24 (MeSi); 15,67, 16,89 (MeCH₂); 42,78, 44,00 (MeCH₂); 127,6-140,8 (arom. C). ²9Si-NMR (CDCl₃): -23,9, -22,8 (Me₂Si); -16,0, -15,1 (MeSi). MS (70 eV): 427 (2, [M-Ph-Et₂N⁺), 77 (100, [Ph]⁺). Anal. ber. für C₃₂H₅₂N₂Si₄ (576,66): C 66,65, H 9,02, N 4,86; gef.: C 66,23, H 8,67, N 5,15.
- 8. {Phen-1,4-ylenbis[1,2,2,-trimethyl-1-phenyldisilan-2,1-diyl]}-bis(trifluoromethansulfonat) (**6b**). Zu einer Lsg. von 1,45 g (0,0025 mol) 6a in 100 ml Et₂O tropft man bei 0° eine Lsg. von 1,5 g (0,01 mol) CF₃SO₃H in 20 ml Et₂O innerhalb von 15 min. Das ausgefallene CF₃SO₃(Et₂NH₂) wird abfiltriert und das Filtrat eingedampft. Reaktionskontrolle mittels NMR: Ausbeute 93–95%. Da eine destillative Reinigung der Verbindung nicht möglich ist, wird sie für Folgereaktionen ohne weitere Aufarbeitung eingesetzt. ¹H-NMR (CDCl₃): 0,35/0,38 (2s, 2 Me₂Si); 0,59, 0,63 (s, 2 MeSi); 6,91–7,85 (m, 14 arom. H). ¹³C-NMR (CDCl₃): -2,98, -2,17 (Me₂Si); 5,67, 6,23 (MeSiOTf); 117,45, 118,62 (2q, 2 CF₃); 127,0–140,5 (arom. C). ²⁹Si-NMR (CDCl₃): -23,6, -22,6 (Me₂Si); 25,3, 26,8 (MeSiOTf).
- 9. Polymere 7a,b,e. Zu einer Lsg. von 4,9 g (0,01 mol) 5a bzw. 5b in 150 ml Et₂O tropft man bei 0° unter Rühren eine frisch bereitete und titrierte Lsg. von 0,01 mol der entsprechenden Organolithium- oder Organomagnesium-Verbindung innerhalb von 10 min. Man erwärmt auf RT. und dampft ein. Nach Zusatz von 200 ml Toluol fällt CF₃SO₃Li oder (CF₃SO₃)₂Mg aus und wird abfiltriert. Das Lsgm. wird eingedampft und der Rückstand i. HV. 12 h

getrocknet: Polymere als gelbe Pulver. NMR (s. unten): δ 's = Mittelwerte der für Polymere typischen breiten Signal-Gruppen; ²⁹Si-NMR- und ¹³C-NMR-Signalbreite ca. 2–4 ppm.

Polymere 7c,d: Zu einer Lsg. von 4,9 g (0,01 mol) 5a in 250 ml Et_2O tropft man bei 0° eine Mischung aus 0,01 mol der aciden Komponente und 0,022 mol Et_3N in 50 ml Et_2O innerhalb von 30 min. Das $CF_3SO_3(Et_3NH)$ fällt als hellgelbes Öl aus und wird abgetrennt. Man dampft das Lsgm. ein: Polysiloxane als hochviskose Öle.

Poly[(dimethylsilandiyl)phen-1,4-ylen(dimethylsilandiyl)ethin-1,2-diyl] (7a): 1,95 g (90%). Schmp. 150–170°. IR: 2146 cm⁻¹ (C≡C). ¹H-NMR (CDCl₃): 0,31 (12 H, Me₂Si); 7,31 (4 arom. H). ¹³C-NMR (CDCl₃): −2,5 (Me₂Si); 111,7 (C≡C); 134,0, 139,5 (arom. C). ²⁹Si-NMR (CDCl₃): −21,6. M_w 6850 g/mol. Anal. ber. für $C_{12}H_{16}Si_2$ (216,28): C 66,63, H 7,40; gef.: C 66,17, H 7,68.

Poly[(dimethylsilandiyl) (1,1'-biphenyl-3,3-diyl) (dimethylsilandiyl) phen-1,4-ylen] (7b): 3,0 g (88%). Schmp. > 210° (Zers.). 1 H-NMR (CDCl₃): 0,45 (12 H, Me₂Si); 6,90–7,75 (12 arom. H). 13 C-NMR (CDCl₃): -3,5 (Me₂Si); 127,0-140,5 (arom. C). 29 Si-NMR (CDCl₃): -10,2. $M_{\rm w}$ 7230 g/mol. Anal. ber. für C_{22} H₂₄Si₂ (344,38): C 76,72, H 6,97; gef.: C 75,97, H 6,54.

Poly[oxy(diphenylsilandiyl)oxy(dimethylsilandiyl)phen-1,4-ylen(dimethylsilandiyl)] (7c): 3,7 g (92%). 1 H-NMR (CDCl₃): 0,43 (12 H, Me₂Si); 6,91–7,83 (14 arom. H). 13 C-NMR (CDCl₃): -0,6 (Me₂Si); 127,0–138,5 (arom. C). 29 Si-NMR (CDCl₃): -42,9 (Ph₂Si); -1,8 (Me₂Si). $M_{\rm w}$ 8500 g/mol. Anal. ber. für C₂₂H₂₆O₂Si₃ (406,46): C 65,01, H 6,40; gef.: C 64,39, H 6,11.

Poly[oxy(dimethylsilandiyl)phen-1,4-ylen(dimethylsilandiyl)oxyphen-1,4-ylen] (7d): 2,8 g (94%). 1 H-NMR (CDCl₃): 0,45 (12 H, Me₂Si); 6,85 (4 H, OC₆H₄O); 7,30 (4 H, SiC₆H₄Si). 13 C-NMR (CDCl₃): -1,2 (Me₂Si); 121,5, 152,0 (OC₆H₄O); 134,1, 140,0 (SiC₆H₄Si). 29 Si-NMR (CDCl₃): -1,1. $M_{\rm w}$ 8400 g/mol. Anal. ber. für C₁₆H₂₀O₂Si₂ (300,32): C 63,99, H 6,66; gef.: C 63,44, H 6,30.

Poly[(dimethylsilandiyl)phen-1,3-diyl(dimethylsilandiyl)phen-1,4-diyl] (7e): 2,3 g (85%). Schmp. 140–160°. ¹H-NMR (CDCl₃): 0,61 (12 H, Me₂Si); 7,10–7,85 (8 arom. H). ¹³C-NMR (CDCl₃): -1,2 (Me₂Si); 127,0-140,5 (arom. C). ²⁹Si-NMR (CDCl₃): -11,3. $M_{\rm w} = 7430$ g/mol. Anal. ber. für C₁₂H₂₀Si₂ (268,32): C 71,62, H 7,45; gef.: C 71,30, H 7,04.

Der Autor dankt der Wacker Chemie GmbH, Burghausen, für Chemikalienspenden. Herrn Prof. R. Nesper sei für fördernde Unterstützung der Arbeiten gedankt.

LITERATURVERZEICHNIS

- [1] M. Ishikawa, H. Ni, K. Matsuzaki, K. Nate, H. Yokono, J. Polym. Sci., Polym. Lett. Ed. 1984, 22, 669.
- [2] K. Nate, M. Ishikawa, H. Ni, H. Watanabe, Y. Saheki, Organometallics 1987, 6, 1673.
- [3] M. Ishikawa, K. Nate, in 'Inorganic and Organometallic Polymers', ACS Symp. Ser., Washington, DC, 1988, Vol. 360, S. 209.
- [4] K. Shiina, J. Organomet. Chem. 1986, 310, C 57.
- [5] J. Ohshita, D. Kanya, M. Ishikawa, T. Yamanaka, J. Organomet. Chem. 1989, 369, C 18.
- [6] M. Ishikawa, Y. Hasegawa, A. Kunai, T. Yamanaka, Organometallics 1989, 8, 2741.
- [7] T. Iwahara, S. Hayase, R. West, Macromolecules 1990, 23, 1298.
- [8] M. Ishikawa, T. Hatano, Y. Hasegawa, T. Horio, A. Kunai, Y. Miyai, T. Ishida, T. Tsukihara, T. Yamanaka, T. Koike, J. Shioya, *Organometallics* 1992, 11, 1604.
- [9] S. Ijadi-Magshoody, Y. Pang, T. J. Barton, J. Polym. Sci., Part A: Polym. Chem. 1990, 28, 955.
- [10] E. Hengge, A. Baumegger, J. Organomet. Chem. 1989, 369, C 39.
- [11] M. Ishikawa, Y. Hasegawa, A. Kunai, T. Yamanaka, J. Organomet. Chem. 1990, 381, C 57.
- [12] S. Ijadi-Magshoody, T.J. Barton, Macromolecules 1990, 23, 4485.
- [13] J. L. Bredfort, R. Corriu, Ph. Gerbier, C. Guerin, B. Henner, A. Jean, T. Kuhlmann, F. Garnier, A. Yasser, Organometallics 1992, 11, 2500.
- [14] S. Hu, W.P. Weber, Polym. Bull. 1989, 21, 133.
- [15] J. Ohshita, D. Kanaya, M. Ishikawa, T. Koike, T. Yamanaka, Macromolecules 1991, 24, 2106.
- [16] P. Chicart, R. Corriu, J. Moreau, F. Garnier, A. Yasser, Chem. Mater. 1991, 3,8.
- [17] H. H. Hong, W. P. Weber, Polymer. Bull. 1989, 22, 363.
- [18] J. Ohshita, D. Kanaya, M. Ishikawa, T. Yamanaka, Chem. Express 1990, 5, 489.
- [19] J. Ohshita, K. Furumori, M. Ishikawa, T. Yamanaka, Organometallics 1989, 8, 2084.
- [20] J. Ohshita, A. Matsuguchi, K. Furumori, R. Hong, M. Ishikawa, T. Yamanaka, T. Koike, J. Shioya, Macromolecules 1992, 25, 2134.

- [21] R. Corriu, W.E. Douglas. Z. Yang, Y. Karakus, G.H. Gross, D. Bloor, J. Organomet. Chem. 1993, 455, 69.
- [22] R. Corriu, W. E. Douglas, Z. Yang, J. Polym. Sci., Part C: Polym. Lett. 1990, 28, 431.
- [23] T. D. Tilley, Chem. Mater. 1993, 5, 1487.
- [24] J. Ohshita, D. Kanaya, M. Ishikawa, Appl. Organomet. Chem. 1993, 7, 269.
- [25] W. Uhlig, Habilitationsschrift, Universität Halle, 1991.
- [26] W. Uhlig, Chem. Ber. 1992, 125, 47.
- [27] W. Uhlig, in 'Organosilicon Chemistry', Eds. N. Auncr und J. Weis, VCH, Weinheim, 1993, S.21-26.
- [28] W. Uhlig, J. Organomet. Chem. 1993, 452, 29.
- [29] W. Uhlig, Z. Anorg. Allg. Chem. 1993, 619, 1479.
- [30] W. Uhlig, Z. Anorg. Allg. Chem. 1991, 601, 125.
- [31] C. Tretner, B. Zobel, R. Hummeltenberg, W. Uhlig, J. Organomet. Chem. 1994, 468, 63.
- [32] W. Uhlig, Chem. Ber. 1994, im Druck.
- [33] W. Uhlig, Z. Naturforsch. 1994, im Druck.
- [34] H. Emde, D. Domsch, H. Feger, U. Frick, A. Götz, H. H. Hergott, K. Hoffmann, W. Kober, K. Krägeloh, T. Oesterle, W. Steppan, W. West, G. Simchen, Synthesis 1982, 1.
- [35] H. H. Hergott, G. Simchen, Liebigs Ann. Chem. 1980, 1718.
- [36] W. Uhlig, J. Organomet. Chem. 1991, 421, 189.
- [37] W. Uhlig, C. Tretner, J. Organomet. Chem. 1994, 467, 31.
- [38] A. R. Bassindale, T. Stout, J. Organomet. Chem. 1984, 271, C 1.
- [39] W. Uhlig, A. Tzschach, J. Organomet. Chem. 1989, 378, C 1.
- [40] R. Corriu, D. Laclerq, P. H. Mutin, H. Samson, A. Vioux, J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 187.
- [41] R. E. Burks, E. R. Covington, M. V. Jackson, J. E. Curry, J. Polym. Sci., Polym. Chem. Ed. 1973, 11, 319.
- [42] P. R. Dvornic, R. W. Lenz, J. Polym. Sci., Polym. Chem. Ed. 1982, 20, 951.
- [43] Y. C. Lai, P. R. Dvornic, R. W. Lenz, J. Polym. Sci., Polym. Chem. Ed. 1982, 20, 2277.
- [44] E. A. Williams, J. H. Wengovius, V. M. van Valkenburgh, J. F. Smith, Macromolecules 1991, 24, 1445.
- [45] K. J. Shea, D. A. Loy, O. Webster, J. Am. Chem. Soc. 1992, 114, 6700.
- [46] S.A. Nye, S.A. Swint, J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 131.
- [47] M. Ishikawa, H. Sakamoto, M. Ishii, J. Ohshita, J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 3281.
- [48] R. D. Rieke, S. E. Bales, J. Chem. Soc., Chem. Commun. 1973, 879.
- [49] J. L. Wardell, in 'The Chemistry of the Metal-Carbon Bond', Ed. F. R. Hartley, John Wiley & Sons Ltd., Chichester, 1987, Vol. 4, S. 1-159.
- [50] C. L. Raston, G. Salem, in 'The Chemistry of the Metal-Carbon Bond', Ed. F.R. Hartley, John Wiley & Sons Ltd., Chichester, 1987, Vol. 4, S. 159–306.
- [51] B. J. Wakefield, 'The Chemistry of Organolithium Compounds', Pergamon Press, Oxford, 1974, S. 66.
- [52] G. Wittig, F. Bickelhaupt, Chem. Ber. 1958, 91, 883.
- [53] R. A. Baldwin, M. T. Cheng, J. Org. Chem. 1967, 32, 1572.
- [54] K. Tamao, A. Kawachi, Y. Ito, J. Am. Chem. Soc. 1992, 114, 3989.
- [55] K. Tamao, A. Kawachi, Y. Ito, Organometallics 1993, 12, 580.
- [56] R. West, J. Organomet. Chem. 1986, 300, 327.
- [57] J. Heinicke, W. Uhlig, A. Tzschach, G. Reinhold, Acta Polym. 1990, 41, 538.
- [58] B. van Aefferden, W. Habel, P. Sartori, Chem.-Ztg. 1990, 114, 367.
- [59] H. Staab, F. Binnig, Chem. Ber. 1967, 100, 293.
- [60] K. Mukai, M. Inagaki, Bull. Chem. Soc. Jpn. 1980, 53, 2695.
- [61] P.D. George, L.H. Sommer, F.C. Whitmore, J. Am. Chem. Soc. 1953, 75, 1585.